Historical Perspectives on Food, Health, and Prosperity

Nathan Nunn Professor of Economics Harvard University

May 31, 2012

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Importance of Food and Nutrition

- Contemporary importance is clear, particularly for developing countries.
- However, historically food has played a very important role in shaping the evolution of societies.

And, these historical impacts continue to matter today.

The Historical Impacts of Food

- 1. **Columbian Exchange**: involved the transfer of food crops between the New and Old Worlds.
 - **Potatoes** brought to the Old World.
 - Increased health and prosperity.
 - Sugar plantations established in the New World.
 - Led to underdevelopment in the Americas, but increased welfare in Europe.
- 2. Traditional Agricultural Technology: shaped by the crops a society was endowed with.
 - Some crops were particularly well suited for intensive plough agriculture, rather than shifting hoe agriculture.
 - Plough agriculture significantly decreased female participation in work outside the home.
 - And this in turn, affected the evolution of beliefs about the unequal roles of men and women in societies.

Columbian Exchange

Average Daily Consumption (calories)		Annual Production (millions of tonnes)	Land Harvested (millions of hectares)		
Rice	567	Sugar cane	1,252.5	Wheat	215.5
Wheat	527	Rice	598.8	Rice	154.1
Sugar	196	Maize	592.5	Maize	137.0
Maize	147	Wheat	585.9	Soybeans	74.4
Potatoes	60	Potatoes	328.7	Barley	54.5
Cassava	42	Sugar beet	247.1	Sorghum	41.0
Sorghum	32	Cassava	176.5	Millet	37.1
Sweet Potatoes	29	Soybeans	161.3	Rapeseed	25.8
Millet	29	Sweet potatoes	138.7	Sunflower seed	21.1
Soybeans	17	Barley	133.1	Potatoes	20.1
Bananas	14	Oil palm fruit	120.4	Sugar cane	19.5
Coconuts	12	Tomatoes	108.9	Cassava	17.0
Apples	9	Watermelons	76.5	Oats	12.7
Tomatoes	8	Bananas	64.9	Coffee, green	10.8
Oranges	8	Grapes	64.8	Coconuts	10.6
Rye	7	Oranges	63.8	Chick peas	10.1
Yams	7	Apples	59.1	Oil palm fruit	10.0
Onions	7	Sorghum	55.8	Rye	9.8
Plantains	7	Coconuts	52.9	Sweet potatoes	9.7
Barley	7	Onions, dry	49.8	Olives	8.3
Other Notable New	World Foo	ods:			
Cacao Beans	3	Eggplants	27.2	Cacao beans	7.6
Pineapples	2	Sunflower seed	26.5	Natural rubber	7.6
		Chillies/peppers, green	20.9	Tobacco	4.2
		Pineapples	15.1	Tomatoes	4.0

The World's Most Popular Foods in 2000

Top Consuming Countries for Various New World Foods

(average calories per capita per day)

Maize		Cassava		Sweet Potatoes		
Country	Consumption	Country	Consumption	Country	Consumption	
Lesotho	1,508	Congo, Dem. Rep.	925	Solomon Islands	457	
Malawi	1,151	Congo	688	Rwanda	330	
Mexico	1,093	Angola	668	Burundi	293	
Zambia	1,058	Mozambique	650	Uganda	228	
South Africa	924	Ghana	639	China	106	
Zimbabwe	903	Benin	470	Timor-Leste	64	
Guatemala	835	Liberia	451	Madagascar	59	
Timor-Leste	808	Togo	393	Cuba	57	
El Salvador	772	Madagascar	382	Tanzania	57	
Kenya	766	Central African Rep.	374	Haiti	45	
Potatoes		Tomatoes		Pineapples		
Country	Consumption	Country	Consumption	Country	Consumption	
Belarus	320	Greece	68	Costa Rica	84	
Latvia	258	Libya	47	Thailand	26	
Estonia	255	United Arab Emirates	45	Kenva	20	
Lithuania	248	Egypt	44	Philippines	14	
Ukraine	248	Turkey	42	Samoa	11	
Poland	242	Italy	38	Venezuela	10	
Portugal	221	Lebanon	33	Antigua and Barbuda	8	
United Kingdom	221	Tunisia	32	Australia	8	
Russian Federation	217	Israel	29	Malaysia	8	
Ireland	209	Cuba	26	Swaziland	8	

Largest Producers of New and Old World Foods

(millions of tonnes unless otherwise indicated)

Pote	atoes	Chili Peppers	s, Dry	Chili Pepp	bers, Green	
Country	Production	Country	Production	Country	Production	
China	66.32	India	0.98	China	9.44	
Russia	33.98	China	0.21	Mexico	1.73	
India	24.71	Pakistan	0.17	Turkey	1.48	
Poland	24.23	Bangladesh	0.14	Spain	0.95	
United States	23.30	Ethiopia	0.12	United States	0.91	
Ukraine	19.84	Viet Nam	0.08	Indonesia	0.73	
Germany	13.69	Peru	0.06	Nigeria	0.72	
Belarus	8.72	Mexico	0.06	Egypt	0.43	
Netherlands	8.23	Myanmar	0.05	South Korea	0.39	
UK	6.64	Nigeria	0.05	Italy	0.36	
Tomatoes		Cacao Bea	ins	Tobacco		
Country	Production	Country	Production	Country	Production	
China	22.32	Côte d'Ivoire	1.40	China	2.56	
United States	11.56	Ghana	0.44	Brazil	0.58	
Turkey	8.89	Indonesia	0.42	India	0.52	
Italy	7.54	Nigeria	0.34	United States	0.48	
India	7.43	Brazil	0.20	Zimbabwe	0.23	
Egypt	6.79	Cameroon	0.12	Turkey	0.20	
Spain	3.77	Ecuador	0.10	Indonesia	0.15	
Iran	3.19	Malaysia	0.07	Greece	0.14	
Brazil	2.98	Papua New Guinea	0.05	Italy	0.13	
Mexico	2.67	Colombia	0.04	Argentina	0.11	

Panel A: Ten Largest Producers of New World Foods

200

Sugar Cane		Coffee (Green)	Soybeans		
Country	Production	Country	Production	Country	Production	
Brazil	327.70	Brazil	1.90	United States	75.06	
India	299.23	Viet Nam	0.80	Brazil	32.73	
China	69.30	Colombia	0.64	Argentina	20.14	
Thailand	54.05	Indonesia	0.55	China	15.41	
Pakistan	46.33	Côte d'Ivoire	0.38	India	5.28	
Mexico	44.10	Mexico	0.34	Paraguay	2.98	
Australia	38.16	Guatemala	0.31	Canada	2.70	
Cuba	36.40	India	0.29	Bolivia	1.20	
Colombia	33.40	Ethiopia	0.23	Indonesia	1.02	
United States	32.76	Honduras	0.19	Italy	0.90	
Oranges		Bana	inas			
Country	Production	Country	Production			
Brazil	21.33	India	14.14			
United States	11.79	Ecuador	6.48			
Mexico	3.81	Brazil	5.66			
India	2.67	China	5.14			
Spain	2.62	Philippines	4.93			
Italy	1.88	Indonesia	3.75			
Iran	1.84	Costa Rica	2.18			
Egypt	1.61	Mexico	1.86			
Pakistan	1.33	Thailand	1.75			
China	1.18	Colombia	1.61			

Panel B: Ten Largest Producers of Old World Foods

Native Andean Potato Breeds

Is there Something Special about the Potato?

In the Wealth of Nations, Adam Smith wrote:

- "the food produced by a field of potatoes is...much superior to what is produced by a field of wheat...No food can afford a more decisive proof of its nourishing quality, or of its being peculiarly suitable to the health of the human constitution."
- And historians have even asserted that:
 - "Potatoes, by feeding rapidly growing populations, permitted a handful of European nations to assert domination over most of the world between 1750 and 1950...It is certain that without potatoes, Germany could not have become the leading industrial and military power of Europe after 1848, and no less certain that Russia could not have loomed so threateningly on Germany's eastern border after 1891." (McNeill, 1999)

TABLE I Average Crop Yields of English Farms in the Eighteenth Century

	Average yield per acre		Energy value of crop	Acres of land needed to provide 42 megajoules per
	Bushels	Kilograms	Megajoules	day for one year
Wheat	23	650	8,900	1.70
Barley	32	820	11,400	1.40
Oats	38	690	9,300	1.60
Potatoes	427	10,900	31,900	0.50

Notes. Data are from eighteenth-century England, recorded in Young's (1771, p. 20) The Farmer's Tour through the East of England, Volume 4; reproduced in Davidson et al. (1975).

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Quantifying the Impacts of the Potato on Health and Prosperity

- But did the diffusion of the potato really have large impacts in the Old World?
- In Nunn and Qian (QJE, 2011) we attempt to empirically quantify the impact of the potato on Old World population, city growth, and adult heights.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The FAO Data

- Data on the suitability for potato cultivation are taken from the Global Agro-Ecological Zones (GAEZ) 2002 database.
 - Provides information on suitability for growing different crops across 50km × 50km grid cells.
 - Constructed by combining information on crop-specific growing constraints with detailed grid-cell level GIS data on the temperature, rainfall, sunlight, and soil.

We define land that can obtain at least 40% of the maximum yield as being suitable for potato cultivation.

Figure II: Average potato suitability in the Old World.

Flexible Estimating Equation

$$y_{it} = \sum_{j=1100}^{1900} \beta_j \ln Potato Area_i \cdot l_t^j + \sum_{j=1100}^{1900} \mathbf{X}_i' \mathbf{I}_t^j \Phi_j$$
$$+ \sum_c \gamma_c \, l_i^c + \sum_{j=1100}^{1900} \rho_j \, l_t^j + \varepsilon_{it}$$

- In Potato Area; is the log of land area suitable for the cultivation of the potatoes.
- $\sum \mathbf{X}'_i \mathbf{I}'_t$ is a vector of controls interacted with time-period FEs.
- I_i^c are country fixed effects
- ▶ I^j_t are time period fixed effects: 1000, 1100, 1200, 1300, 1400 1500, 1600, 1700 1750, 1800, 1850, 1900

(a) In Total Population

(b) City Population Share

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

Difference-in-Difference Estimating Equation

$$y_{it} = \beta \ln Potato Area_i \cdot I_t^{Post} + \sum_{j=1100}^{1900} \mathbf{X}'_i \mathbf{I}_t^j \Phi_j + \sum_c \gamma_c I_i^c + \sum_{j=1100}^{1900} \rho_j I_t^j + \varepsilon_{it}$$

- InPotato Area;: the natural log of land suitable for potato cultivation.
- I_t^{Post} : an indicator variable for the post-1700 time periods.
- $\blacktriangleright \sum \mathbf{X}'_i \mathbf{I}'_i$: a vector of controls interacted with time-period FEs.

- I_i^c : country fixed effects
- I_t^j : time period fixed effects

		Dependent Variable								
		ln to	tal popula	ation			City population share			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
$\ln \textit{Potato Area} \times \textit{Post}$	0.059 (0.009)	0.044 (0.011)	0.032 (0.012)	0.034 (0.011)	0.043 (0.014)	0.0044 (0.0009)	0.0046 (0.0009)	0.0036 (0.0012)	0.0039 (0.0011)	0.0039 (0.0011)
Baseline Controls (× Year fi	xed effects	s):								
In Old World Crops Area	Ν	Y	Y	N	Y	N	Y	Y	N	Y
In Elevation	Ν	Ν	Y	Y	Y	N	N	Y	Y	Y
ln Ruggedness	Ν	Ν	Y	Y	Y	N	N	Y	Y	Y
In Tropical Area	Ν	Ν	Y	Y	Y	N	N	Y	Y	Y
Other Controls (× Year fixed	d effects):									
ln All Crops Area	Ν	Ν	Ν	Y	N	N	N	N	Y	N
ln Maize Area	Ν	Ν	Ν	N	Y	N	N	N	N	Y
ln Silage Maize Area	Ν	Ν	Ν	Ν	Y	N	N	Ν	N	Y
In Sweet Potatoes Area	Ν	Ν	Ν	N	Y	N	N	N	N	Y
ln Cassava Area	Ν	Ν	Ν	Ν	Y	Ν	Ν	Ν	N	Y
Observations	1552	1552	1552	1552	1552	1552	1552	1552	1552	1552
R-squared	0.99	0.99	0.99	0.99	0.99	0.38	0.39	0.44	0.44	0.48

TABLE IV THE IMPACT OF THE POTATO: BASELINE ESTIMATES

Sources: See Data Appendix.

Figure I: Growth in world population and urbanization, 1000–1900.

・ロト ・聞ト ・ヨト ・ヨト

æ

Magnitudes

- How much of the increase in population/urbanization from 1700 to 1900 can be attributed to potatoes?
- Estimates suggest that this figure is approximately 25% for both population and urbanization.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

	Dependent Variable: In city population							
	Citi	es with 40,000)+ Populati	on (Baselin	e Sample)	Cities with	1000+ Population	
	All Old V	World Cities	Omitting Europe		Europe Only	Europe Only		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
In Potato Area × Post	0.050	0.047	0.035	0.039	0.034	0.042	0.029	
Clustered s.e.	(0.023)	(0.021)	(0.022)	(0.019)	(0.075)	(0.025)	(0.015)	
Conley s.e.	[0.020]	[0.020]	[0.024]	[0.021]	[0.045]	[0.023]	[0.019]	
Controls (× time-period fixed effects):								
Baseline controls	Y	Y	Y	Y	Y	Y	Y	
Continent fixed effects	Ν	Y	N	Y	Y	N	N	
Country fixed effects	Ν	Ν	Ν	Ν	N	Ν	Y	
Observations	1607	1607	933	933	674	9319	9319	
R-squared	0.77	0.79	0.75	0.75	0.87	0.74	0.79	

TABLE VIII THE EFFECTS OF THE POTATO ON CITY POPULATIONS

Notes: Observations are at the city-year level. Columns (1)–(5) use a sample of cities with forty thousand or more inhabitants and the following time periods: 1000, 1100, 1200, 100

Impacts on Heights: Estimating Equation

$$\begin{aligned} \text{Height}_{ivt} &= \eta \ln \text{Potato} Area_{v} \cdot I_{t}^{\text{Post}} + \mathbf{X}'_{i} \Gamma \\ &+ \sum_{d} \mathbf{X}'_{v} \mathbf{I}_{t}^{d} \Phi_{d} + \sum_{v} \gamma_{v} I_{i}^{v} + \sum_{j=1658}^{1770} \rho_{j} I_{t}^{j} + \varepsilon_{ivt} \end{aligned}$$

- ▶ *i* indexes individuals, *v* villages of birth, and *t* years of birth, where *t*=1658-1770.
- Height_{ivt}: adult height, measured in inches.
- > I_t^{Post} : indicator for post-adoption period (after 1700).
- $\sum_{d} \mathbf{X}'_{v} \mathbf{I}_{t}^{d} \Phi_{d}$: vector of village-level control variables interacted with decade FEs.
- $\sum_{v} \gamma_{v} I_{i}^{v}$: town-of-birth fixed effects.
- $\sum_{j} \rho_{j} I_{t}^{j}$: year-of-birth fixed effects.

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

TABLE IX THE EFFECTS OF THE POTATO ON SOLDIER HEIGHTS WITHIN FRANCE

	Dependent Variable: Adult height (inches)						
	(1)	(2)	(3)	(4)			
$\boxed{ \ln \textit{Potato Area} \times \textit{Post} }$	0.102	0.062	0.103	0.054			
Clustered s.e.	(0.025)	(0.018)	(0.025)	(0.018)			
Conley s.e.	[0.014]	[0.013]	[0.017]	[0.015]			
Controls (\times decade fixed effects):							
Baseline controls	Y	Y	Y	Y			
French region fixed effects	Ν	Y	Ν	Y			
Additional controls	Ν	Ν	Y	Y			
Observations	13646	13646	13646	13646			
R-squared	0.23	0.23	0.23	0.24			

- Potatoes increased living standards, health and prosperity.
- Contemporary evidence suggests that increased prosperity is associated with decreased conflict.
- Initial findings suggest that within Europe the introduction of the potato also led to a decline in conflict (inter-state and intra-state).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Subsequent Research on the Columbian Exchange

Shuo Chen and James Kung (2011): "The Malthusian Quagmire: Maize and Population Growth in China, 1500–1900"

Show that the adoption of maize in China increased population but not urbanization rates.

Ruixue Jia (2011): "Weather Shocks, Sweet Potatoes and Peasant Revolts in Historical China"

- Documents a positive relationship between droughts and peasant revolts (floods have no effect) between 1470 and 1900.
- The adoption of the sweet potato, because of its drought resistance, severed the link between drought and conflict.

Sugar and the Columbian Exchange

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Sugar, Plantation Slavery and Economic Underdevelopment

Figure 2: Partial correlation plot showing the relationships between the proportion of slaves in the population in 1750 S_i/L_i and the natural log of per capita GDP in 2000 ln y_i .

Sugar, Plantation Slavery and Economic Underdevelopment

Figure 4: Partial correlation plots showing the relationships between plantation slavery S_i^P/L_i and the natural log of per capita GDP in 2000 ln y_i .

The Benefits of the Sugar Boom in Europe

- Sugar provided a cheap source of calories consumed by all classes.
- Hersch and Voth (2011) consider the welfare impacts of greater access to sugar due to its mass cultivation in the Americas.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

They estimate that between 1600 and 1850, sugar consumption increased welfare by 7.5-8.0%.

Crops and Traditional Agriculture

- Our examination of the Columbian Exchange illustrates the historical impacts of food on health and prosperity.
- Alesina, Giuliano and Nunn (2011) consider an alternative (perhaps less obvious) persistent impact of traditional food crops.
- ► Hypothesis: Crops ⇒ Agricultural technology ⇒ Female participation in agriculture ⇒ Persistent norms regarding female work outside the home.

Plough Agriculture

Hoe Agriculture

Crops and plough use

- There are differences in the extent to which crops benefit from the introduction of the plough.
- ► Factors identified in the anthropological literature include:
 - Length of planting season.
 - Frequency of planting.
 - Amount of land to be prepared.
 - Qualities/characteristics of the soil that crops can be grown in (sloped, rocky, swampy, clayey vs. loamy, depth, etc).
- Pryor (1985) groups crops into two categories:
 - 1. **Plough-positive crops**: teff, wheat, barley, rye, buckwheat, wet rice, and industrial crops.
 - 2. **Plough-negative crops**: millet, sorghum, root crops, maize, dry rice and tree crops.

Barley

Rye

Wheat

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Millet

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Sorghum

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへで

Plough Agriculture

	Dependent variable: Participation of females relative to males in the following tasks:									
	Overall agriculture		Land clearance	Soil preparation	Planting	Crop tending	Harvesting			
_	(1)	(2)	(3)	(4)	(5)	(6)	(7)			
Traditional plough agriculture	-0.861***	-1.133***	-0.414**	-1.164***	-1.244***	-1.033***	-0.770**			
	(0.217)	(0.272)	(0.200)	(0.355)	(0.341)	(0.367)	(0.308)			
Ethnographic controls	yes	yes	yes	yes	yes	yes	yes			
Observations	660	124	129	124	131	122	131			
R-squared	0.14	0.22	0.15	0.13	0.13	0.19	0.19			

Table: Was plough agriculture associated with a gender division of labor?

Notes: The unit of observation is an ethnic group. In column 1 ethnic groups are from the *Ethnographic Atlas* and in columns 2-7 they are from the *Standard Cross Cultural Sample*. Each dependent variable measures female participation in a particular activity (e.g., agriculture). The variables take on integer values between 1 and 5 and are increasing in female participation. Coefficients are reported with robust standard errors in brackets. In column 1, we report Conley standard errors adjusted for spatial correlation (assuming a window that is sixty degrees latitude and sixty degrees longitude). ***, *** and * indicate significance at the 1,5 and 10% levels.

(日) (日) (日) (日) (日) (日) (日) (日)

<ロト <回ト < 注ト < 注ト

æ

・ロト ・四ト ・ヨト ・ヨト

æ

Outcomes of interest

Female labor force participation:

- 1. Proportion of women in the labor force (employed or seeking employment).
- 2. Beliefs: "When jobs are scarce, men should have more right to a job than women"
 - ► (i) agree, (ii) neither (iii) disagree
 - ► Variable equals 1 if agree, and 0 if disagree.

Female representation in positions of power:

- 1. Proportion of firm owners/managers that are female.
- 2. Proportion of seats in national parliament held by women.
- 3. Beliefs: "On the whole, men make better political leaders than women"
 - (i) strongly disagree, (ii) disagree, (iii) agree, (iv) strongly agree
 - Variable takes on values 1, 2, 3, 4.

FLFP

	Dependent variable:								
	Female la	abor force	Share of firm	ns with some					
	partici	pation	female o	wnership	Females	in politics	Average effect size (AES)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Historical plough use	-14.596***	-13.542***	-8.349*	-11.569**	-8.936***	-8.930***	-0.896***	-0.934***	
	(3.12)	(3.058)	(4.358)	(5.529)	(2.053)	(2.137)	(0.137)	(0.135)	
Historical controls:									
Agricultural suitability	yes	yes	yes	yes	yes	yes	yes	yes	
Domesticated animals	yes	yes	yes	yes	yes	yes	yes	yes	
Tropics	yes	yes	yes	yes	yes	yes	yes	yes	
Political hierarchies	yes	yes	yes	yes	yes	yes	yes	yes	
Economic complexity	yes	yes	yes	yes	yes	yes	yes	yes	
Contemporary controls:									
In income, In income ²	yes	yes	yes	yes	yes	yes	yes	yes	
Continent fixed effects	no	yes	no	yes	no	yes	no	yes	
Observations	163	163	106	106	144	144	138°	138°	
R-squared	0.413	0.426	0.132	0.208	0.358	0.392			

Table: Country-level OLS estimates.

Notes: OLS estimates are reported with robust standard errors in brackets. The unit of observation is a country. ***, ** and * indicate significance at the 1, 5 and 10% levels.

^aThis is the average number of observations in the regressions for the three outcomes.

Figure: Partial correlation plot: Dep var is FLFP

Figure: Partial correlation plot: Dep var is share of firms with female ownership

Figure: Partial correlation plot. Dep var is share of national seats held by women

ъ

Summary: The Historical Impacts of Food

- 1. **Columbian Exchange**: involved the transfer of food crops between the New and Old Worlds.
 - **Potatoes** brought to the Old World.
 - Increased health and prosperity.
 - Sugar plantations established in the New World.
 - Led to underdevelopment in the Americas, but increased welfare in Europe.
- 2. **Traditional Agricultural Technology**: shaped by the crops a society was endowed with.
 - Some crops were particularly well suited for intensive plough agriculture, rather than shifting hoe agriculture.
 - Plough agriculture significantly decreased female participation in work outside the home.
 - And this in turn, affected the evolution of beliefs about the unequal roles of men and women in societies.

References

- Nunn, Nathan. 2008. "Slavery, Inequality, and Economic Development in the Americas: An Examination of the Engerman-Sokoloff Hypothesis," in E. Helpman (ed.), *Institutions and Economic Performance*, Harvard University Press, pp. 148-180.
- Nunn, Nathan and Nancy Qian. 2010. "The Columbian Exchange: A History of Disease, Food, and Ideas," *Journal of Economic Perspectives*, 24(2): 163–188.
- Nunn, Nathan and Nancy Qian. 2011. "The Potato's Contribution to Population and Urbanization: Evidence from a Historical Experiment," *Quarterly Journal of Economics*, 126(2): 593-650.
- Alesina, Alberto, Paola Giuliano and Nathan Nunn. 2011. "On the Origins of Gender Roles: Women and the Plough," Working Paper, Harvard University.